Principal Spectral Theory and Variational Characterizations for Cooperative Systems with Nonlocal Diffusion |
发布人:张莹 发布时间:2022-10-23 浏览次数:10 |
主讲人简介: 王学锋教授于2019年8月加入香港中文大学(深圳)。在此之前,他在杜兰大学工作了26年,2016-2019年在南方科技大学任职。他一直从事教学工作,从大一微积分到博士生专题课程。王学锋教授的研究领域是偏微分方程(PDE)。他的一些研究课题旨在通过典范的例子在简洁的框架下发现新的数学现象,提供新的视角,展示新的方法。 其它的课题(例如大范围分支理论和Krein-Rutman理论)是为分析应用中出现的日益复杂的PDE模型提供通用的、易操作的工具。 内容摘要: We study a general class of cooperative systems with nonlocal diffusion operators that may or may not be coupled. These systems are either “strong” in cooperation or “strong”in the coupling of the nonlocal diffusion operators, and in the former case, diffusion may not occur in some of the components of the system at all. We prove results concerning the existence, uniqueness, multiplicity, variational characterizations of the principal eigenvalue of the system, the spectral bound, the essential spectrum, and the relationship between the sign of principal eigenvalue and the validity of the maximum principle. We do so using an elementary method, without resorting to Krein-Rutmen theorem. This is a joint work with Yuanhang Su and Ting Zhang. 主持人:秦玉明 撰写:李学元 |