主讲人简介:
俞成,博士,本科、硕士研究生毕业于东华大学应用数学系,2013年获美国匹兹堡大学博士学位,曾在美国德克萨斯大学奥斯丁分校工作,目前是美国佛罗里达大学数学系助理教授,研究方向是偏微分方程。曾在Invent. Math., Arch. Ration. Mech. Anal.,SIAM J. Math. Anal., J. DifferentialEquations等杂志上发表论文10多篇。
内容摘要:
In this talk, I will talk about the existence of global weak solutions for the compressible Navier-Stokes equations, in particular, the viscosity coefficients depend on the density. Our main contribution is to further develop renormalized techniques so that the Mellet-Vasseur type in equality is not necessary for the compactness. This provides existence of global solutionsin time, for the barotropic compressible Navier-Stokes equations, for any$\gamma>1$, in three dimensional space, with large initial data, possibly vanishing on the vacuum. This is a joint work with D. Bresch and A. Vasseur.
报告主持:胡良剑