How far in the regularity theory of the Navier-Stokes equations? |
发布人:张莹 发布时间:2018-10-09 浏览次数:239 |
主题: How far in the regularity theory of the Navier-Stokes equations?主讲人: Hugo Beirao da Veiga地点: 松江校区2号学院楼331理学院报告厅时间: 2018-10-18 15:00:00组织单位: 理学院应用数学系 主讲人简介: Hugo Beirao da Veiga现为意大利比萨大学数学系教授,1971年获法国巴黎第六大学博士学位,师从G. Stampacchia教授,从事偏微分方程、泛函分析及数学流体力学理论的研究,尤其是在Navier-Stokes方程等流体力学方程的研究方面有诸多杰出的工作。在CPAM、ARMA、JMPA、ARMA等国际著名期刊上发表130多篇学术论文,是多家国际期刊的编委。 内容摘要: The starting point of this talk is the well known sufficient condition for regularity of weak solutions to the evolution Navier-Stokes equations,sometimes called Prodi-Serrin's condition (PS condition).Roughly speaking,it establishes that solutions v which belong to the functional space , where and ,are regular. On the other hand,a formal equivalence is suggested by the well known equation . In three papers published nearly twenty years ago we have proved some results which support this equivalence.In a recent paper we obtained new results in this direction.Interesting open problems still remain. 讲座主持:秦玉明 教授 讲座语言:英语 |